A THEORETICAL APPROACH FOR PREDICTING NUMBER OF TURNS AND CYCLONE PRESSURE DROP

L. Wang, C. B. Parnell, B. W. Shaw, R. E. Lacey

ABSTRACT. A new theoretical method for computing travel distance, number of turns, and cyclone pressure drop has been developed and is presented in this article. The flow pattern and cyclone dimensions determine the travel distance in a cyclone. The effective number of turns was calculated based on the travel distance. Cyclone pressure drop is composed of five pressure loss components. The frictional pressure loss is the primary pressure loss in a cyclone. This new theoretical analysis of cyclone pressure drop for 1D2D, 2D2D, and 1D3D cyclones was tested against measured data at different inlet velocities and gave excellent agreement. The results show that cyclone pressure drop varies with the inlet velocity, but not with cyclone diameter.

Keywords. Cyclone, Number of turns, Pressure drop, 1D2D cyclone, 2D2D cyclone, 1D3D cyclone.

Cyclone separators provide a method of removing particulate matter from air streams at low cost and low maintenance. In general, a cyclone consists of an upper cylindrical part referred to as the barrel and a lower conical part referred to as the cone (fig. 1). The air stream enters tangentially at the top of the barrel and travels downward into the cone, forming an outer vortex. The increasing air velocity in the outer vortex results in a centrifugal force on the particles, separating them from the air stream. When the air reaches the bottom of the cone, an inner vortex is created, reversing direction and exiting out the top as clean air while the particulates fall into the dust collection chamber attached to the bottom of the cyclone.

In the agricultural processing industry, 2D2D (Shepherd and Lapple, 1939) and 1D3D (Parnell and Davis, 1979) cyclone designs are the most commonly used abatement devices for particulate matter control. The D in the 2D2D designation refers to the barrel diameter of the cyclone. The numbers preceding each D relate to the length of the barrel and cone sections, respectively. A 2D2D cyclone has barrel and cone lengths two times the barrel diameter, whereas a 1D3D cyclone has a barrel length equal to the barrel diameter and a cone length of three times the barrel diameter. Parnell and Davis (1979) first developed a 1D3D cyclone for cotton gins in an attempt to provide a more efficient fine dust collector. This cyclone design is referred to as the traditional 1D3D cyclone (fig. 2). Holt and Baker (1999) and Funk et al. (1999) conducted further experimental research on this cyclone design and reported a significant improvement in efficiency by modifying the traditional 1D3D design to employ a 2D2D inlet (fig. 2). This modified 1D3D cyclone design is referred to as 1D3D in this article.

The configuration of a 2D2D cyclone is illustrated in figure 3. Previous research (Wang, 2000) indicated that, compared to other cyclone designs, 1D3D and 2D2D are the most efficient cyclone collectors for fine dust (particle diameters less than 100 μm). Mihalski et al (1993) reported “cycling lint” near the trash exit for the 1D3D and 2D2D cyclone designs when the PM in the inlet air stream contained lint fiber. Mihalski reported a significant increase in the exit PM concentration for these high efficiency cyclone designs and attributed this to small balls of lint fiber “cycling” near the trash exit causing the fine PM that would normally be collected to be diverted to the clean air exit stream. Simpson...
and Parnell (1995) introduced a new low-pressure cyclone, called the 1D2D cyclone, for the cotton ginning industry to solve the cycling-lint problem. The 1D2D cyclone is a better design for high-lint content trash compared with 1D3D and 2D2D cyclones (Wang et al., 1999). The configuration of 1D2D cyclone is illustrated in figure 3.
THE CLASSICAL CYCLONE DESIGN METHOD

Several methods or procedures are used by engineers to design cyclones. The design procedures outlined in *Air Pollution Engineering Manual* (Davis, 2000) and *Air Pollution Control: A Design Approach* (Copper and Alley, 2002) are perceived by some engineers as a standard method. This design process, referred to as classical cyclone design (CCD), requires knowledge of the number of turns, the cutpoint, and the fractional collection efficiency to determine a cyclone’s overall collection efficiency. The CCD also includes a model for cyclone pressure drop determination.

The number of effective turns in a cyclone is the number of revolutions that the gas completes while passing through the cyclone. The model for the number of turns included in CCD was developed by Lapple (1951) as:

\[
N_c = \frac{1}{H_c} \left[ L_c + \frac{Z_c}{2} \right]
\]

where

- \(N_c\) = number of effective turns
- \(H_c\) = height of inlet duct
- \(L_c\) = length of barrel body
- \(Z_c\) = vertical length of cone body.

Mihalski and Kaspar (1992) conducted experiments to determine the number of turns, cutpoints, and collection efficiency. The results from their tests suggest that the measured numbers of turns for 1D3D and 2D2D cyclones are 6.00 and 5.25, respectively, which do not agree with Lapple model predictions (eq. 1). Further research on determination of the number of turns is needed.

In the evaluation of a cyclone design, pressure drop is a primary consideration. Because it is directly proportional to the energy requirement, knowledge of pressure drop through a cyclone is essential in designing a fan system. Shepherd and Lapple (1939) reported that a cyclone’s pressure drop was composed of the following components:

- Loss due to expansion of gas when it enters the cyclone chamber.
- Loss as kinetic energy of rotation in the cyclone chamber.
- Loss due to wall friction in the cyclone chamber.
- Any additional friction losses in the exit duct, resulting from the swirling flow above and beyond those incurred by straight flow.
- Any regain of the rotational kinetic energy as pressure energy.

Based on their theoretical analyses, Shepherd and Lapple (1939) developed two empirical models for cyclone pressure drop estimation. The Shepherd and Lapple approach has been considered the simplest to use, and it is included in CCD. These two models are shown in equations 2 and 3:

\[
H_v = K \frac{H_c B_c}{D_c^2} \]

where

- \(H_v\) = pressure drop, expressed in number of inlet velocity heads
- \(K\) = constant that depends on cyclone configurations and operating conditions (\(K = 12\) to 18 for a standard tangential-entry cyclone)

\[
\Delta P = \frac{1}{2} \rho_i V_i^2 H_v
\]

where

- \(\Delta P\) = pressure drop (Pa)
- \(\rho_i\) = gas density (kg/m\(^3\))
- \(V_i\) = inlet gas velocity (m/s).

OTHER MODELS FOR NUMBER OF TURNS AND PRESSURE DROP PREDICTIONS

Many other models have been developed since the work of Lapple (1951) and Shepherd and Lapple (1939) to determine the number of turns and pressure drop in a cyclone. Table 1 lists several models described in the *Handbook of Powder Science and Technology* (Fayed and Otten, 1997) for predicting cyclone collection characteristics, from which the number of turns can be backwards derived, and table 2 summarizes several other models included in the handbook for cyclone pressure drop prediction. Leith and Mehta (1973) conducted research to compare experimental values of pressure drop with calculated values for each of the pressure drop equations using experimental data drawn from the literature (Shepherd and Lapple, 1940; Stern et al., 1955; Stairmand, 1949, 1951). They concluded that the pressure drop calculation methods proposed by Barth (1956), Stair-
mand (1949, 1951), and Shepherd and Lapple (1939, 1940) appeared superior to the methods proposed by Alexander (1949) and First (1950). The Shepherd and Lapple approach was the simplest to use of all the methods considered.

However, the equations are either empirical models or involve variables and dimensionless parameters not easily evaluated in practical applications. It is known (Doerschlag and Miczek, 1977) that cyclone pressure drop is dependent on the cyclone design and on operating parameters such as inlet velocity. The empirical models cannot be used for all cyclone designs as new cyclone technology and new cyclone designs are developed. Further theoretical research is needed to scientifically evaluate cyclone performance, including predicting cyclone pressure drop.

**Flow Pattern in a Cyclone**

A theoretical study of cyclone performance requires knowledge of the characteristics of the internal flow. This knowledge of the flow pattern in a cyclone fluid field is the basis for theoretical considerations for the prediction of the number of effective turns, pressure drop, and dust collection efficiency. Many investigations have been made to determine the flow pattern (velocity profile) in a cyclone rotational.

<table>
<thead>
<tr>
<th>Table 2. Equations for predicting pressure loss at number of inlet velocity heads ($H_v$).</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pressure Loss Equations</strong></td>
</tr>
<tr>
<td>$H_v = \frac{ab}{D_c^2} \left[ 24 + \left( \frac{h(H-h)}{D^2} \right) \right]^{1/3}$</td>
</tr>
<tr>
<td>$f = 0.8 \left[ \frac{1}{n-1} \left( \frac{4 - 2n}{3} \right) \right] + 0.2 \left[ 2n - 1 \right] + 1.5 \left( 2n \right)$</td>
</tr>
<tr>
<td>$H_v = 4.62 \frac{ab}{D D_c} \left[ \left( \frac{D}{D_c} \right)^{2n} - 1 \left( \frac{1-n}{n} \right) + \left( \frac{D}{D_c} \right)^{2n} \right]$</td>
</tr>
<tr>
<td>$\phi = \frac{2G A}{ab}$</td>
</tr>
<tr>
<td>$H_v = 1 + 2\phi^2 \left( \frac{2(D-h)}{D_c} \right) - 1 + 2 \left( \frac{4ab}{\pi D_c^2} \right)^2$</td>
</tr>
<tr>
<td>List of symbols:</td>
</tr>
<tr>
<td>$h = $ cyclone cylinder height</td>
</tr>
<tr>
<td>$H = $ cyclone overall height</td>
</tr>
<tr>
<td>$a = $ gas entry height</td>
</tr>
<tr>
<td>$n = $ vortex exponent</td>
</tr>
<tr>
<td>$A = $ inside surface area of cyclone</td>
</tr>
<tr>
<td>$b = $ gas entry width</td>
</tr>
<tr>
<td>$S = $ gas outlet height</td>
</tr>
<tr>
<td>$B = $ dust outlet diameter</td>
</tr>
<tr>
<td>$T = $ absolute temperature</td>
</tr>
<tr>
<td>$D = $ cyclone cylinder diameter</td>
</tr>
<tr>
<td>$D_c = $ gas outlet diameter</td>
</tr>
<tr>
<td>$D_m = $ cyclone cylinder diameter (m)</td>
</tr>
<tr>
<td>$f = $ factor</td>
</tr>
<tr>
<td>$G' = $ friction factor (0.005)</td>
</tr>
</tbody>
</table>

Barth (1956): $H_v = \frac{D_c}{D} \left[ 1 + 2\phi^2 \left( \frac{2(D-h)}{D_c} \right) - 1 \right]^{1/2}$

Barth (1956): $\theta = \frac{\pi D_c (D-h)}{4ab \alpha^* + 2(H-h)(D-h)\beta} \frac{1}{\alpha^*} \left[ 1 - \frac{1.2h}{D} \right]$
field. Shepherd and Lapple (1939) reported that the primary flow pattern consisted of an outer spiral moving downward from the cyclone inlet and an inner spiral of smaller radius moving upward into the exit pipe (known as outer vortex and inner vortex). The transfer of fluid from the outer vortex to the inner vortex apparently began below the bottom of the exit tube and continued down into the cone to a point near the dust outlet at the bottom of the cyclone. They concluded from streamer and pitot tube observations that the radius marking the outer limit of the inner vortex and the inner limit of the outer vortex was roughly equal to the exit duct radius. Ter Linden (1949) measured the details of the flow field in a 36 cm (14 in.) cyclone. He reported that the interface of the inner vortex and outer vortex occurred at a radius somewhat less than that of the exit duct in the cylindrical section of the cyclone and approached the centerline in the conical section. In this research, the interface diameter was assumed to be the cyclone exit tube diameter ($D_o = D_e$).

The velocity profile in a cyclone can be characterized by three velocity components (tangential, axial, and radial). The tangential velocity is the dominant velocity component. It also determines the centrifugal force applied to the air stream and to the particles. Research results of Shepherd and Lapple (1939), Ter Linden (1949), and First (1950) indicated that tangential velocity in the annular section (at the same cross-sectional area) of the cyclone could be determined by:

$$V_t = \frac{nr}{C_1}$$

where

- $V_t =$ tangential velocity
- $r =$ air stream rotational radius
- $n =$ flow pattern factor ($n = 0.5$ in outer vortex)
- $C_1 =$ numerical constant.

**A NEW THEORETICAL METHOD**

One hypothesis in this research is that the air stream travel distance in the outer vortex and the cyclone dimensions determine the number of turns. The travel distance can be calculated mathematically by the velocity and travel time. A cyclone consists of a cylinder upper body (barrel) with a conical lower section (fig. 1). In the barrel, there are two velocity components: tangential velocity ($V_t$) and axial velocity ($V_a$). The airflow rate is constant in the barrel, so the tangential velocity and the axial velocity can be considered as constant, too. In the cone, the air stream is squeezed. As a result, air leaks from the outer vortex to the inner vortex through their interface. It is assumed that the air leak (airflow rate) follows a linear model from the top of the cone to the intersection of vortex interface and the cone walls. This assumption yields an effective length for the dust collection ($Z_o$, fig. 4). There are three velocity components in the cone: tangential velocity ($V_t$), axial velocity ($V_a$), and radial velocity ($V_r$).

**TRAVEL DISTANCE AND NUMBER OF TURNS IN THE BARREL ($L_1$ AND $N_1$)**

There are two velocity components in the barrel: tangential velocity ($V_{t1}$) and axial velocity ($V_{a1}$). It is assumed that tangential velocity is equal to the inlet velocity for the tangential inlet design ($V_{t1} = V_{in}$). The axial velocity can be calculated based on the constant airflow rate:

$$L_1 = \int_0^t V_{t1} \cdot dt = \int_0^t V_{a1} \cdot \frac{dz}{V_{a1}}$$

where

- $L_1 =$ travel distance in the barrel
- $V_1 =$ total average velocity in the barrel at time $t$
- $Z_1 =$ length of the barrel
- $dz =$ axial component of travel distance during the time $dt$.

Then:

$$L_1 = 1.53 \cdot \pi \cdot Z_1$$

for 1D3D and 2D2D designs

$$L_1 = 1.26 \cdot \pi \cdot Z_1$$

for 1D2D design
The following equation can be used to approximately estimate the number of turns in the barrel:

\[
N_1 = \frac{L_1}{\pi \cdot D_c}
\]  

(8)

where

- \(N_1\) = number of turns in the barrel
- \(L_1\) = travel distance in the barrel
- \(D_c\) = cyclone diameter.

Then:

- \(N_1 = 1.53\) (for 1D3D)
- \(N_1 = 3.06\) (for 2D2D)
- \(N_1 = 1.26\) (for 1D2D)

**Travel Distance and Number of Turns in the Cone (\(L_2\) and \(N_2\))**

In the cone, the flow pattern becomes more complex. Three velocity components are involved in the total velocity calculation: tangential velocity (\(V_{t2}\)), axial velocity (\(V_{z2}\)), and radial velocity (\(V_{r2}\)). The tangential velocity in the cone can be determined by equation 5. In developing the equations for the velocity components, the following assumptions are made:

- The diameter (\(D_o\)) of the interface of the inner vortex and outer vortex is equal to the exit tube diameter (\(D_e\)) (fig. 4).
- The airflow leaks from the outer vortex to the inner vortex along the travel path in the cone because the air stream is squeezed.
- The air leak follows a linear model from the top of the cone to the intersection of the vortex interface and the cone walls. At the top of the cone, the airflow rate in the outer vortex is equal to the total inlet airflow rate. At the intersection area, all the air has leaked to the inner vortex and the airflow rate is equal to zero. At any other cross-section between the top and the intersection (in the \(Z_{o2}\) range), the outer vortex airflow rate can be quantified using equation 9:

\[
Q_z = Q_{in} \cdot \frac{Z}{Z_{o2}}
\]

(9)

where

- \(Q_z\) = airflow rate at \(Z\) cross-section (at time \(t\))
- \(Q_{in}\) = inlet airflow rate \(\left( Q_{in} = V_{in} \cdot \frac{D_c^2}{8} \right)\)
- \(Z\) = axial component of airflow at travel distance at time \(t\)
- \(Z_{o2}\) = axial length of total travel distance in the cone:
  - \(Z_{o2} = 2D_c\) (for 1D3D)
  - \(Z_{o2} = 1.33D_c\) (for 2D2D)
  - \(Z_{o2} = 1.5D_c\) (for 1D2D).

Based on the assumptions described above, the three velocity components in the cone can be determined using equations 10, 11, and 12:

\[
V_{t2} = \frac{C \cdot V_{in}}{r} = \frac{R \cdot V_{in}}{r_0 + Z \cdot t g \theta}
\]

(10)

where

- \(V_{t2}\) = tangential velocity at time \(t\) in the cone
- \(V_{in}\) = inlet velocity
- \(R\) = radius of the barrel (\(R = D_c/2\))
- \(r_0\) = inner vortex and outer vortex interface radius (\(r_0 = D_c/2\))
- \(Z\) = axial component of travel distance at time \(t\)
- \(\theta\) = cyclone cone angle

\[
t g \theta = \frac{1}{8} \quad \text{(for 1D3D)} \quad t g \theta = \frac{3}{16} \quad \text{(for 2D2D)}
\]

Then:

\[
V_{t2} = \frac{4D_c \cdot V_{in}}{Z + 2D_c} \quad \text{(for 1D3D)}
\]

\[
V_{t2} = \frac{8D_c \cdot V_{in}}{3Z + 4D_c} \quad \text{(for 2D2D)}
\]

\[
V_{t2} = \frac{8D_c \cdot V_{in}}{2Z + 5D_c} \quad \text{(for 1D2D)}
\]

Then:

\[
V_{z2} = \frac{Q_z}{A_z} = \frac{-Q_{in} \cdot \frac{1}{\pi \cdot (R - r_0) \cdot \frac{R - r_o}{Z_{o2}}}}{Z_{o2}}
\]

(11)

where

- \(V_{z2}\) = axial velocity at time \(t\) in the cone
- \(Q_z\) = airflow rate at \(Z\) cross-section (at time \(t\))
- \(A_z\) = outer vortex cross-section area at \(Z\) (annular area)
- \(Q_{in}\) = inlet airflow rate
- \(R\) = radius of the barrel (\(R = D_c/2\))
- \(r_0\) = inner vortex and outer vortex interface radius (\(r_0 = D_c/2\))
- \(Z\) = axial component of travel distance at time \(t\).

Then:

\[
V_{z2} = -\frac{4D_c \cdot V_{in}}{(Z + 4D_c) \cdot \pi} \quad \text{(for 1D3D)}
\]

\[
V_{z2} = -\frac{8D_c \cdot V_{in}}{(3Z + 8D_c) \cdot \pi} \quad \text{(for 2D2D)}
\]

\[
V_{z2} = -\frac{16D_c \cdot V_{in}}{(3Z + 15D_c) \cdot \pi} \quad \text{(for 1D2D)}
\]

\[
V_r = V_{t2} \cdot t g \theta
\]

(12)

The total average velocity and travel distance in the cone can be obtained using the following equations:

\[
V_2 = \sqrt[2]{V_{t2}^2 + V_{z2}^2 + V_r^2}
\]

(13)

\[
L_2 = \int_0^{Z_{o2}} V_2 \, dz / V_{z2}
\]

(14)

where

- \(L_2\) = travel distance in the cone
- \(V_2\) = total average velocity in the cone at time \(t\)
- \(Z_{o2}\) = axial length of travel distance in the cone
- \(dz\) = axial component of travel distance during time \(dt\).
Mathcad (v. 11, Mathsoft Engineering and Education, Inc., Cambridge, Mass.) was used to solve equation 14, and then:

\[ L_2 = 10.83 D_c \text{ (Mathcad solution for 1D3D)} \]
\[ L_2 = 7.22 D_c \text{ (Mathcad solution for 2D2D)} \]
\[ L_2 = 2.565 D_c \text{ (Mathcad solution for 1D2D).} \]

The numbers of turns in the cone can approximately estimated using equation 15:

\[ N_2 = \frac{L_2}{\pi \cdot \left( \frac{D_c + D_0}{2} \right)} \]  

(15)

where

\[ N_2 = \text{number of turns in the cone} \]
\[ L_2 = \text{travel distance in the cone} \]
\[ D_c = \text{cyclone diameter} \]
\[ D_0 = \text{inner vortex and outer vortex interface diameter} \]

\( (D_0 = D_e). \)

Then:

\[ N_2 = 4.60 \text{ (for 1D3D)} \]
\[ N_2 = 3.07 \text{ (for 2D2D)} \]
\[ N_2 = 1.01 \text{ (for 1D2D).} \]

**Total Travel Distance (L) and Number of Turns (N)**

As a result of the above calculations, the total travel distance and number of turns for 1D3D, 2D2D, and 1D2D cyclones are listed in the table 3.

**Comparison of Number of Turns**

Experimentally measured number of turns (Mihalski and Kaspar, 1992), the number of turns calculated using the CCD method (eq. 1), and the number of turns derived from equations (d100 or d50) listed in table 1 and research results by Kaspar, 1992), the number of turns calculated using the CCD model failed to accurately predict the number of turns in a cyclone with an inlet design different from 2D2D cyclone (Lapple cyclone; Shepherd and Lapple, 1939). The number of turns derived from d100 or d50 models listed in table 1 does not agree with experimental measurement for all three cyclone designs.

**Analysis of Cyclone Pressure Drop**

In general, cyclone pressure loss can be obtained by summing all individual pressure loss components. The following pressure loss components are involved in the analysis of cyclone pressure loss for this research:

- Cyclone entry loss (\( \Delta P_e \)).
- Kinetic energy loss (\( \Delta P_k \)).
- Frictional loss in the outer vortex (\( \Delta P_f \)).
- Kinetic energy loss caused by the rotational field (\( \Delta P_r \)).
- Pressure loss in the inner vortex and exit tube (\( \Delta P_o \)).

**Cyclone Entry Loss (\( \Delta P_e \))**

Cyclone entry loss is the dynamic pressure loss in the inlet duct and can be determined by:

\[ \Delta P_e = C_2 \cdot VP_{in} \]  

(16)

where

\[ \Delta P_e = \text{cyclone entry loss (dynamic pressure loss in the inlet duct)} \]
\[ C_2 = \text{dynamic loss constant (} C_2 \approx 1 \text{)} \]
\[ VP_{in} = \text{inlet velocity pressure}. \]

**Kinetic Energy Loss (\( \Delta P_k \))**

Kinetic energy loss is caused by the area change (velocity change) from the inlet duct to the outlet tube. It can be calculated by:

\[ \Delta P_k = VP_{in} - VP_{out} \]  

(17)

where

\[ \Delta P_k = \text{kinetic energy loss} \]
\[ VP_{in} = \text{inlet velocity pressure} \]
\[ VP_{out} = \text{outlet velocity pressure}. \]

**Frictional Loss in the Outer Vortex (\( \Delta P_f \))**

The frictional pressure loss is the pressure loss in the cyclone outer vortex caused by the friction of the wall surface. In the outer vortex, the air stream flows in a downward spiral through the cyclone. It may be considered that the air stream travels in an imaginary spiral tube with diameter \( D_s \) and length \( L \) (the air stream travel distance in the

---

**Table 3. Air stream travel distance and number of effective turns from this study.[a]**

<table>
<thead>
<tr>
<th>Cyclone Design[a]</th>
<th>Barrel ( L_1 )</th>
<th>Cone ( L_2,N_2 )</th>
<th>Total ( L,N )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D3Dc</td>
<td>4.8Dc</td>
<td>1.53</td>
<td>10.83Dc 4.60</td>
</tr>
<tr>
<td>1D3Dc</td>
<td>4.8Dc</td>
<td>1.53</td>
<td>10.83Dc 4.60</td>
</tr>
<tr>
<td>2D2D</td>
<td>9.6Dc</td>
<td>3.06</td>
<td>7.22Dc 3.07</td>
</tr>
<tr>
<td>1D2D</td>
<td>5.2Dc</td>
<td>1.26</td>
<td>2.57Dc 1.01</td>
</tr>
</tbody>
</table>

[a] \( L_1 = \text{travel distance in the barrel part of a cyclone.} \)
\( N_1 = \text{number of turns in the barrel part of a cyclone.} \)
\( L_2 = \text{travel distance in the cone part of a cyclone.} \)
\( N_2 = \text{number of turns in the cone part of a cyclone.} \)
\( L = \text{total travel distance in a cyclone.} \)
\( N = \text{number of turns in a cyclone.} \)

[a] 1D3Dc is the traditional 1D3D cyclone shown in figure 2.
outer vortex, fig. 5). The frictional pressure loss can be determined by Darcy’s equation:

\[ d\Delta P_f = f \frac{V_P}{D_s} dL \] (18)

where
- \( d\Delta P_f \) = frictional pressure loss at travel distance \( dL \)
- \( f \) = friction factor, dimensionless
- \( dL \) = air stream travel distance in the outer vortex during time \( dt \)
- \( D_s \) = equivalent stream diameter at time \( t \)
- \( V_P \) = stream velocity pressure at time \( t \).

Frictional Loss in the Barrel (\( \Delta P_{f1} \)): The equivalent stream diameter (\( D_{s1} \)) was used to quantify the size of the oval-shaped stream (the stream in the imaginary spiral tube). The flow rate and total velocity of the stream determine this equivalent diameter, as shown in equation 19:

\[ V_{s1} = \frac{\pi D_{s1}^2}{4} = \frac{V_in \cdot D_c^2}{8} \] (19)

where
- \( V_{s1} \) = air stream velocity in the barrel part (\( V_{s1} = V_1 \) determined by eq. 6)
- \( D_{s1} \) = equivalent stream diameter in the barrel
- \( D_c \) = cyclone diameter
- \( V_in \) = inlet velocity.

Then
- \( D_{s1} = 0.395D_c \) for 1D3D, 2D2D, and 1D2D.

The friction pressure loss in the barrel part can be determined as follows:

\[ \Delta P_{f1} = \int_0^L f \frac{V_{P_{s1}}}{D_{s1}} dL = \int_0^L f \frac{V_{P_{s1}}}{D_{s1}} \cdot \frac{V_1 \cdot dz}{V_{z1}} \] (20)

where
- \( \Delta P_{f1} \) = frictional loss in the barrel
- \( L_1 \) = travel distance in the barrel
- \( f \) = friction factor
- \( V_{P_{s1}} \) = stream velocity pressure at time \( t \) in the barrel

Frictional Loss in the Cone (\( \Delta P_{f2} \)): In the cone part of a cyclone, the equivalent stream diameter (\( D_{s2} \)) is determined by:

\[ V_{s2} = \frac{\pi D_{s2}^2}{4} = \frac{V_in \cdot D_c^2}{8} \cdot \frac{Z}{Z_{o2}} \] (23)

where
- \( V_{s2} \) = air stream velocity in the cone (\( V_{s2} = V_2 \) determined by eq. 13)
- \( D_{s2} \) = equivalent stream diameter in the cone
- \( D_c \) = cyclone diameter
- \( V_in \) = inlet velocity

Table 5. Friction factors (\( f \)) for friction pressure loss calculation.

<table>
<thead>
<tr>
<th>Cyclone Design</th>
<th>Size (Dc)</th>
<th>e/Dc</th>
<th>Reynolds Number</th>
<th>Moody Chart Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D3D</td>
<td>0.2 m (6 in.)</td>
<td>0.0010</td>
<td>1.64x10^5</td>
<td>0.022</td>
</tr>
<tr>
<td>0.9 m (36 in.)</td>
<td>0.0002</td>
<td>9.85x10^5</td>
<td>0.016</td>
<td>0.008</td>
</tr>
<tr>
<td>2D2D</td>
<td>0.2 m (6 in.)</td>
<td>0.0010</td>
<td>1.54x10^5</td>
<td>0.022</td>
</tr>
<tr>
<td>0.9 m (36 in.)</td>
<td>0.0002</td>
<td>9.20x10^5</td>
<td>0.015</td>
<td>0.008</td>
</tr>
<tr>
<td>1D2D</td>
<td>0.2 m (6 in.)</td>
<td>0.0010</td>
<td>1.23x10^5</td>
<td>0.023</td>
</tr>
<tr>
<td>0.9 m (36 in.)</td>
<td>0.0002</td>
<td>7.40x10^5</td>
<td>0.015</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Then:

**Interface:**

change in the pressure field from the cone wall to the vortex kinetic energy loss, it is assumed that the direction of rotation to the inner vortex. To develop an equation for the rotational force and allow the air stream to move from the outer vortex a pressure field because of radial acceleration. The rotational loss can be quantified as the pressure difference at the junction point.

The solutions of equation 24 are the models used to predict friction loss in the cone part of a cyclone. The friction factor ($f$) is given in table 5. Again, the above models indicate that the friction loss in the cone is a function of the height of the cone. Therefore, the friction loss in the cone is a function of the height of the cone.

**Kinetic Energy Loss Caused by the Rotational Field ($\Delta P_r$)**

In the cyclone cone, the rotation of the airflow establishes a pressure field because of radial acceleration. The rotational energy loss is the energy that is used to overcome centrifugal force and allow the air stream to move from the outer vortex to the inner vortex. To develop an equation for the rotational kinetic energy loss, it is assumed that the direction of rotation is the same in both the inner and outer vortex so that little friction is to be expected at their interface (the junction point).

The rotational loss can be quantified as the pressure change in the pressure field from the cone wall to the vortex interface:

$$dP = \rho \frac{V_l^2}{r} dr$$  \hspace{1cm} (25)

where:

- $dP$ = pressure gradient from outer vortex to inner vortex at radius $r$
- $\rho$ = air density
- $V_l$ = tangential velocity at radius $r$.

Solving equation 25, the rotational loss can be obtained as follows:

$$\Delta P_r = \rho \frac{V_l^2}{r} \left( \frac{R}{r_o} - 1 \right)$$  \hspace{1cm} (26)

Then:

- $\Delta P_r = 2 \frac{V_l^2}{r}$ (for 1D3D and 2D2D)
- $\Delta P_r = 1.22 \frac{V_l^2}{r}$ (for 1D2D)

where:

- $\Delta P_r$ = rotational pressure loss

### CYCLONE PRESSURE DROP PREDICTIONS

Equations 16, 17, 22, 24, 26, and 27 are the models used to predict five pressure loss components. Based on these models, pressure drops for different sizes of cyclones with different inlet velocities were calculated. Predicted pressure drops for 1D3D, 2D2D, and 1D2D cyclones with their respective design velocities are listed in table 6. Pressure drops predicted using the CCD method are also included in table 6 for comparison. The predictions of pressure drop in table 6 indicate: (1) cyclone pressure drop is independent of cyclone size; (2) frictional loss in the outer vortex and rotational energy loss in a cyclone are the major pressure loss components; (3) frictional loss is a function of cyclone height (the higher a cyclone, the higher the friction loss); and (4) predictions of pressure drop using the CCD method tend to be higher than the predictions from this research.

### TESTING OF THE NEW METHOD

**System Setup**

An experiment was conducted to measure cyclone pressure drops at different inlet velocities for the comparison of measured pressure drop versus pressure drop predicted by the new theory developed in this research. The experimental setup is shown in figure 6. The tested cyclones were 0.2 m (6 in.) in diameter. Pressure transducers (model PX274, output = 4 to 20 mA, accuracy = ±1.0% of full scale, Omega Engineering, Stamford, Conn.) and data loggers (HOBO H8 RH/Temperature/2x External, range = 0 to 20 mA, accuracy = ±1.0% of full scale, Onset Computer Corp., Bourne, Mass.) were used to obtain the differential pressure from the cyclone inlet and outlet and the pressure drop across the orifice meter.

The orifice pressure drop was used to monitor the system airflow rate by the following relationship:
### Table 6. Predicted pressure drops for 1D3D, 2D2D, and 1D2D cyclones.

<table>
<thead>
<tr>
<th>Cyclone[a]</th>
<th>Size</th>
<th>(\Delta P_e) [b]</th>
<th>(\Delta P_k) [c]</th>
<th>(\Delta P_f) [d]</th>
<th>(\Delta P_{f1})</th>
<th>(\Delta P_{f2})</th>
<th>(\Delta P_i)</th>
<th>(\Delta P_o) [f]</th>
<th>Total (\Delta P) [g]</th>
<th>CCD (\Delta P) [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D3D at (V_{in}) = 16 m/s (3200 ft/min)</td>
<td>0.1 (4)</td>
<td>159 (0.64)</td>
<td>95 (0.38)</td>
<td>22 (0.09)</td>
<td>359 (1.44)</td>
<td>319 (1.28)</td>
<td>117 (0.47)</td>
<td>1071 (4.30)</td>
<td>1189 (4.77)</td>
<td>1189 (4.77)</td>
</tr>
<tr>
<td></td>
<td>0.3 (12)</td>
<td>159 (0.64)</td>
<td>95 (0.38)</td>
<td>22 (0.09)</td>
<td>359 (1.44)</td>
<td>319 (1.28)</td>
<td>117 (0.47)</td>
<td>1071 (4.30)</td>
<td>1189 (4.77)</td>
<td>1189 (4.77)</td>
</tr>
<tr>
<td></td>
<td>0.9 (36)</td>
<td>159 (0.64)</td>
<td>95 (0.38)</td>
<td>22 (0.09)</td>
<td>359 (1.44)</td>
<td>319 (1.28)</td>
<td>117 (0.47)</td>
<td>1071 (4.30)</td>
<td>1189 (4.77)</td>
<td>1189 (4.77)</td>
</tr>
<tr>
<td>2D2D at (V_{in}) = 15 m/s (3000 ft/min)</td>
<td>0.1 (4)</td>
<td>140 (0.56)</td>
<td>82 (0.33)</td>
<td>40 (0.16)</td>
<td>212 (0.85)</td>
<td>279 (1.12)</td>
<td>103 (0.41)</td>
<td>854 (3.43)</td>
<td>1045 (4.20)</td>
<td>1045 (4.20)</td>
</tr>
<tr>
<td></td>
<td>0.3 (12)</td>
<td>140 (0.56)</td>
<td>82 (0.33)</td>
<td>40 (0.16)</td>
<td>212 (0.85)</td>
<td>279 (1.12)</td>
<td>103 (0.41)</td>
<td>854 (3.43)</td>
<td>1045 (4.20)</td>
<td>1045 (4.20)</td>
</tr>
<tr>
<td></td>
<td>0.9 (36)</td>
<td>140 (0.56)</td>
<td>82 (0.33)</td>
<td>40 (0.16)</td>
<td>212 (0.85)</td>
<td>279 (1.12)</td>
<td>103 (0.41)</td>
<td>854 (3.43)</td>
<td>1045 (4.20)</td>
<td>1045 (4.20)</td>
</tr>
<tr>
<td>1D2D at (V_{in}) = 12 m/s (2400 ft/min)</td>
<td>0.1 (4)</td>
<td>89 (0.36)</td>
<td>75 (0.30)</td>
<td>12 (0.05)</td>
<td>80 (0.32)</td>
<td>107 (0.43)</td>
<td>27 (0.11)</td>
<td>392 (1.57)</td>
<td>428 (1.72)</td>
<td>428 (1.72)</td>
</tr>
<tr>
<td></td>
<td>0.3 (12)</td>
<td>89 (0.36)</td>
<td>75 (0.30)</td>
<td>12 (0.05)</td>
<td>80 (0.32)</td>
<td>107 (0.43)</td>
<td>27 (0.11)</td>
<td>392 (1.57)</td>
<td>428 (1.72)</td>
<td>428 (1.72)</td>
</tr>
<tr>
<td></td>
<td>0.9 (36)</td>
<td>89 (0.36)</td>
<td>75 (0.30)</td>
<td>12 (0.05)</td>
<td>80 (0.32)</td>
<td>107 (0.43)</td>
<td>27 (0.11)</td>
<td>392 (1.57)</td>
<td>428 (1.72)</td>
<td>428 (1.72)</td>
</tr>
</tbody>
</table>

[a] Cyclone size in m (in.).
[b] \(\Delta P_e\) = cyclone entry pressure drop in Pa (inch H2O).
[c] \(\Delta P_k\) = kinetic energy loss in Pa (inch H2O).
[d] \(\Delta P_f\) = frictional loss in the outer vortex in Pa (inch H2O):
   - \(\Delta P_{f1}\) = frictional loss in the barrel,
   - \(\Delta P_{f2}\) = frictional loss in the cone.
[e] \(\Delta P_i\) = pressure loss caused by the rotational field in Pa (inch H2O).
[f] \(\Delta P_o\) = kinetic loss in the inner vortex and exit tube in Pa (inch H2O).
[g] Total \(\Delta P\) = cyclone pressure drop predicted by this research in Pa (inch H2O).
[h] CCD \(\Delta P\) = cyclone pressure drop predicted using the CCD method (eqs. 2 and 3, using \(K = 15\) and \(\rho_a = 1.2 \text{ kg/m}^3\)) in Pa (inch H2O).
[i] \(V_{in}\) = cyclone inlet velocity in m/s (ft/min).

![Figure 6. Pressure drop measurement system setup.](image)

\[
Q = 3.478 \times K \times D_o^2 \sqrt{\frac{\Delta P}{\rho_a}}
\]

where
- \(Q\) = airflow rate through the orifice meter (m\(^3\)/s)
- \(K\) = flow coefficient (dimensionless)
- \(D_o\) = orifice diameter (m)
- \(\Delta P\) = pressure drop cross the orifice (mm H\(_2\)O)
- \(\rho_a\) = air density (kg/m\(^3\)).

A problem was observed during the tests. In the outlet tube, the air stream spirals upward. This spiral path caused some difficulties in measuring static pressure in the outlet tube. In order to measure the static pressure drop through the cyclone, three evenly distributed static pressure taps (fig. 7) were made and inserted into the air stream in such a way that

![Figure 7. Static pressure taps in a cyclone outlet tube for pressure drop measurement.](image)
the static pressure sensing position was in the direction of the airflow to avoid velocity pressure. It is desirable to keep one side of the static pressure tap perpendicular to the wall of the cyclone outlet tube and the other side of the static pressure tap parallel to the flow direction (fig. 7). If the static pressure taps were not placed properly in the exit tube, the measurement would include part of velocity pressure, instead of static pressure only.  

COMPARISONS OF THEORETICAL PREDICTIONS WITH TESTING RESULTS

Three tests were performed on 2D2D and 1D2D cyclone designs and four tests were performed on a 1D3D cyclone design at different inlet velocities. For the 1D3D cyclone, tests 1, 2, and 3 were conducted on a 0.2 m (6 in.) cyclone and test 4 was on a 0.1 m (4 in.) cyclone.
Figures 8 through 10 show the comparison of the predicted and measured cyclone pressure drop curves (pressure drops vs. inlet velocity). For the 1D3D cyclone, there were no significant pressure drop differences among tests 1, 2, 3, and 4 (fig. 8). As mentioned before, tests 1, 2, and 3 were conducted on a 0.2 m (6 in.) cyclone and test 4 was conducted on a 0.1 m (4 in.) cyclone. Therefore, the measured results indicate that pressure drop is independent of cyclone size.

For the 2D2D and 1D2D cyclones (figs. 9 and 10), the results of test 1 are significantly different from the results of tests 2 and 3. This was caused by not placing the static pressure taps in a good position. Three evenly distributed (around the wall of outlet tube) static pressure taps were initially placed in position such that one end of each tap was in the direction of airflow (fig. 7). These taps were glued to the wall of outlet tube. However, it was observed that the positions of the static pressure taps were deflected due to the glue not being completely dry. This caused the taps to be not totally in the direction of the flow, and some velocity pressure was added. As a result, the results of test 1 were significantly higher than the results of tests 2 and 3. The taps were re-positioned to the correct direction after test 1.

Pressure drop curves using CCD and the four other models listed in the table 2 are also included in figures 8 through 10. Comparisons of the pressure drop curves predicted by the different models and the experimental measurements indicate that the CCD, First, and Barth models tended to predict higher pressure drops for all three cyclone designs, whereas the Stairmand model tended to predict lower pressure drops for all three cyclone designs. Among all the models, this study and the Alexander model tended to give better predictions of pressure drops for all three cyclone designs.

For the 2D2D cyclone design, there is a significant difference between the pressure drops predicted by this study and the test results. This could have been caused by inaccurate measurements due to introducing some velocity pressure into the measurements through deflection of the static pressure taps, as mentioned before.

Table 7 lists comparisons of the pressure drops predicted by the different models for 1D3D, 2D2D, and 1D2D cyclones at their own design inlet velocity, i.e., 16 m/s (3200 fpm), 15 m/s (3000 fpm), and 12 m/s (2400 fpm), respectively. The comparisons illustrate that this study gave pressure drop predictions that were closest to the experimental data. The pressure drops predicted by this study are 1071, 854, and 392 Pa (4.3, 3.43, and 1.57 inch H2O) for the 1D3D, 2D2D, and 1D2D cyclone designs, respectively. Results in table 7 also verify that the theoretical predictions of pressure drop obtained by this study are in excellent agreement with experimental measurements.

**CONCLUSIONS**

Air stream travel distance and effective number of turns can be determined based on the velocity profile in a cyclone. Theoretical analysis shows that the number of turns is determined by the cyclone design and is independent of cyclone diameter and inlet velocity. This study predicted 6.13 turns in 1D3D and 2D2D cyclones and 2.27 turns in a 1D2D cyclone. Cyclone pressure drop consists of five individual pressure drop components. The frictional loss in the outer vortex and the rotational energy loss in the cyclone are the major pressure loss components. The theoretical analyses of the pressure drop for different size cyclones (4, 12, and 36 in.) showed that cyclone pressure drop is independent of cyclone diameter. Experiments were conducted to verify the theoretical analysis results obtained by this study, the CCD method, and several other theoretical models in the literature. Comparisons of pressure drops predicted by different theoretical models and the experimental measurements verified that this study gave pressure drop predictions that were closest to the experimental data, and the theoretical predictions of pressure drop obtained by this study are in excellent agreement with experimental measurements. The new theoretical method can be used to predict the air stream travel distance, number of turns, and cyclone pressure drop.

**REFERENCES**


