
 

 

                 
 

An ASAE/CSAE Meeting Presentation                                                   Paper Number: 044199 

A Comparison of Ammonia Emission Rates from an 
Agricultural Area Source Using Dispersion Modeling:  

Gaussian versus Backward-Lagrangian Stochastic 

Jacqueline E. Price, E.I.T., Graduate Research Assistant 
CAAQES, Texas A&M University, jackieprice02-work@yahoo.com  

Ronald E. Lacey, Ph. D., P.E., Associate Professor 
CAAQES, Texas A&M University, ron-lacey@tamu.edu 

Bryan W. Shaw, Ph. D., Associate Professor 
CAAQES, Texas A&M University, bw-shaw@tamu.edu 

N. Andy Cole, Ph. D., Research Animal Scientist 
USDA-ARS, Bushland, TX, nacole@cprl.ars.usda.gov  

Richard Todd, Ph. D., Research Soil Scientist 
USDA-ARS, Bushland, TX, rtodd@cprl.ars.usda.gov 

Sergio Capareda, Ph. D., Visiting Research Scientist 
CAAQES, Texas A&M University, sergio@cora.tamu.edu 

Calvin B. Parnell, Jr. Ph. D., P.E., Regents Professor 
CAAQES, Texas A&M University, c-parnell@tamu.edu 

 

* CAAQES is the Center for Agricultural Air Quality Engineering & Science at Texas A&M University.  
Please visit http://caaqes.tamu.edu  

* USDA-ARS is the US Department of Agriculture – Agricultural Research Service 

Written for presentation at the 
2004 ASAE/CSAE Annual International Meeting 

Sponsored by ASAE/CSAE 
Fairmont Chateau Laurier, The Westin, Government Centre 

Ottawa, Ontario, Canada 
1 - 4 August 2004 



 

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the 
official position of ASAE or CSAE, and its printing and distribution does not constitute an endorsement of views which may be expressed. 
Technical presentations are not subject to the formal peer review process, therefore, they are not to be presented as refereed publications. 
Citation of this work should state that it is from an ASAE/CSAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2004. Title of 
Presentation. ASAE/CSAE Meeting Paper No. 04xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or 
reproduce a technical presentation, please contact ASAE at hq@asae.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 
USA). 

 

Abstract.  Agricultural operations are thought to contribute significantly to the overall anthropogenic 
ammonia emissions.  Ammonia emissions serve as crucial elements of atmospheric models because 
ammonia is one of the most prevalent alkaline gaseous bases found in the planetary layer.  
Ammonia concentrations affect the overall acidity of precipitation and atmospheric aerosols.  These 
ammonia aerosols have the attention of the EPA and other regulatory agencies because, when 
certain thresholds are exceeded, potential consequences result from these over-threshold 
concentrations of oxidized and reduced forms of nitrogen.   

In this study, an evaluation of ammonia emission rates generated by both the Industrial Source 
Complex (Gaussian) model and the WindTrax (backward-Lagrangian stochastic) model revealed that 
the calculated emission concentrations from each model using the average emission rate generated 
by the model vary by a factor of 10.  

Current and future sources are regulated by the emission rate data from previous time periods.  
Emission factors are published for regulation of various sources, and these emission factors are 
derived based upon back-calculated model emission rates and site management practices.  Thus, a 
factor of 10 ratio in the emission rates could prove troubling in terms of regulation if the model that 
the emission rate is back-calculated from is not used as the model to predict a future downwind 
pollutant concentration. 

 

Keywords.  Aerosols, Air Pollution, Air Quality, Air Sampling, Ammonia, Backward Lagrangian 
Stochastic, Dispersion Modeling, Emission Rate, Gaussian, Regulatory Compliance, Regulatory 
Policy 
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Introduction 
Ammonia (NH3) emissions serve as crucial elements of atmospheric models because ammonia 
is one of the most prevalent gaseous bases found in the planetary boundary layer (PBL).  
Ammonia concentrations affect the overall acidity of precipitation, cloud water, and atmospheric 
aerosols (Aneja et al., 2001).  Typically, ammonia reacts with acidic species to form ammonium 
sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), ammonium and 
the hydroxyl radical (NH4

+ and OH-), or it may be deposited to the earth’s surface by either dry 
or wet deposition processes (Seinfeld and Pandis, 1998).   

Ammonia atmospheric aerosols have the attention of the EPA and other regulatory agencies 
because these aerosols are thought to comprise a large part of secondary PM2.5, which is a 
classification for particulate matter with an aerodynamic equivalent diameter less than or equal 
to a nominal 2.5 µm (Makar et al., 2003; Gupta et al., 2003; Aneja et al., 2001; Yamamoto et al., 
1988; Battye et al., 1994).  Secondary pollutants result from the chemical reaction among two or 
more pollutants.  Researchers have shown that a large percentage of PM2.5 penetrates human 
respiratory systems and deposits in the lungs and alveolar region, subsequently endangering 
the public health (Hinds, 1999; Aneja et al., 2001).  Additionally, these atmospheric aerosols 
have the potential to significantly influence global warming and ozone depletion and to cause 
major environmental damage when redeposited on land and water (MAFF, 1998). 

Currently, neither the EPA nor the Texas Commission of Environmental Quality (TCEQ) 
regulates ammonia as a criteria pollutant.  However, ammonia concentration levels are 
monitored by Effects Screening Levels (ESLs).  If airborne ammonia concentration ESLs are not 
exceeded, then negative health effects and/or welfare effects would not be anticipated (TNRCC, 
2001).  However, ammonia emissions are now being considered as an air quality concern.  
Literature notes that agricultural operations account for a considerable amount of the 
anthropogenic ammonia emitted (Battye et al., 1994; Aneja et al., 2003; Arogo et al., 2001).  
Subsequently, ammonia emissions from agricultural operations have drawn attention from the 
regulators and the agricultural industry as well as the general public outside of the agricultural 
industry.  An understanding of the transport and modeling of NH3 and the inherent error 
surrounding the modeling process is essential for appropriate regulatory decisions and 
determination of source compliance with future regulatory policy. 

In order to determine ESL exceedances, ammonia emissions must be quantified appropriately.  
Gas sampling from an industrial process can be easily performed by directly sampling from the 
stack exhaust.  However, it is much more challenging to quantify gaseous emissions from an 
area source.  One option is to utilize atmospheric dispersion modeling to back-calculate 
pollutant emission rates indirectly.  Literature notes that the backward modeling approach offers 
a lot in terms of ease of calculations, efficiency, and flexibility (Flesch et al., 1995). 

This research evaluates the results of two dispersion models to back-calculate the emission rate 
of ammonia from an area source.  To perform this back-calculation, a Gaussian Plume 
dispersion model, ISC-ST3 (Industrial Source Complex – Short Term Version 3), with the 
Breeze user interface (Trinity Consultants, 12801 N. Central Exp., Suite 1200, Dallas, TX, 
75243), was evaluated and compared to a backward-Lagrangian stochastic based model, 
WindTrax, (Thunder Beach Scientific, 4B-1127 Cartaret Street, Halifax, Nova Scotia, Canada, 
BH3 3P2).  Equivalent test data was input into each dispersion model for comparison of back-
calculated emission rates. 
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Air Pollution Dispersion Modeling 
Modeling of air pollutants plays an important role in the regulatory process by mathematically 
and scientifically describing the causal relationship between pollutant emissions and 
corresponding atmospheric concentrations (Builtjes, 2003).  Dispersion models provide a means 
to mathematically simulate the transport of gases and particles through the atmosphere.  
Estimates of pollutant concentrations downwind of a source can be established from the 
pollutant emission rate and the meteorological conditions using a defined mathematical model.  
Part of the state regulatory process includes demonstrating compliance with air quality 
standards for all regulated pollutants.  Dispersion modeling provides a scientific method for the 
regulatory agency to measure air quality compliance of a future source (one that has not been 
constructed).  Additionally, dispersion modeling can be utilized to quantify the impact of a 
change in an abatement strategy of an existing source (Builtjes, 2003). 

Gaussian Dispersion Modeling 

Currently, the EPA has approved Industrial Source Complex – Short Term 3 (ISC-ST3) as the 
short range dispersion model used to model low level sources, such as animal feeding 
operations (40 CFR Part 51, 1999).  This model is based on a double reflected Gaussian 
dispersion model, which describes the horizontal and vertical concentration distributions with the 
assumptions of continuous emissions, conservation of mass, steady-state conditions, and 
normal distribution of crosswind and vertical concentrations of pollutants (Cooper and Alley, 
2002).  The Gaussian dispersion model utilizes the experimentally determined Pasquill-Gifford 
horizontal and vertical plume spread parameters, σy and σz as seen in equation 1 below. 
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where C10 is the 10 minute concentration (µg/m3), Q is the emission rate (µg/s), u is the one 
hour average wind speed at stack height (m/s), y is the horizontal distance from the centerline of 
the plume (m), z is the height of the receptor with respect to the ground level (m), and H is the 
effective stack height (m) (Cooper and Alley, 2002).  Using measured concentration values as 
well as meteorological data from the concentration sampling period, a pollutant emission rate 
can be back-calculated through equation 1. 

Backward Lagrangian Stochastic (bLS) Modeling  

Lagrangian stochastic (LS) models, also known as random-flight models, determine particle 
trajectories in attempt to imitate turbulent dispersion.  By simulating individual parcels of air, the 
LS model predicts the path followed by each parcel to reach a receptor (Seinfeld and Pandis, 
1998).   

The bLS model is based on the forward LS model, which is the generalized Langevin equation 
under the assumption that the position of a particle evolves jointly as a Markov process with the 
velocity (Flesch et al., 1995).  This model by Flesch, which is simulated by the WindTrax 
software, accounts for the location of particle impact with the ground and the subsequent 
reflection of these particles back into the atmosphere.   

The model uses this information to define the ratio of the modeled concentration to the emission 
rate (C/Q)sim as seen in equation 2 below (Flesch et al., 2004a). 
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where N is the number of particles and wo are the vertical touchdown velocities at the particle’s 
impact with the ground.  The bLS model requires the specification of wind statistics for the 
surface layer.  These can be calculated using established Monin-Obukhov similarity theory 
(MOST) based formulas (Flesch et al., 2004a).  The MOST approach asserts that the average 
gradient and turbulent features of a stratified surface layer only rely upon the height, the 
kinematic heat flux, the buoyancy variable, and the kinematic surface stress (Arya, 2001). 

The bLS approach is based on simulating atmospheric diffusion at a specific location, and its 
validity hinges upon the fundamental diffusion and subsequent Lagrangian models.  The air 
parcels simulated by the Lagrangian model are vertical columns of air that extend from the 
ground up to some height H (Seinfeld and Pandis, 1998).  An underlying assumption in the 
Lagrangian trajectory model is that, when applied to reacting species, it is only applicable to 
linearly reactive species (Lamb and Seinfeld, 1973).  An additional underlying assumption is that 
the chemical reactions that occur are independent of particle displacement and are not 
determined by the frequency of the collisions of particles (Lamb and Seinfeld, 1973).  First the 
three-dimensional wind field, which is defined by ux (x, y, z), uy (x, y, z), and uz (x, y, z), is used 
to calculate the backward trajectories of the air parcels from equation 3 (Seinfeld and Pandis, 
1998): 
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where the location of the air parcel at time t is )(tsv  and )(tuv  is the wind velocity vector (defined 
by ux, uy, uz).  If this equation is integrated from t to to, then the location of the air parcel at any 

given time t on the backward trajectory of the particle, which is defined by )(tsv , can be 
calculated straightforwardly as: 

     
∫=−
ot

t

dutss ττ )()(0
vvv

 [4] 

assuming that at a time to the trajectory ends at the location 0s
v

.  Following the calculation of the 

trajectory path )(tsv , corresponding emission fluxes can be determined by interpolating the 
emission field E (x, y, z, t) and defining flux along the trajectory path, Et(t) as (Seinfeld and 
Pandis, 1998): 

     )),(()( ttsEtEt
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The basic diffusion equation is built upon the basic continuity assumption   
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for i = 1, 2, …N, where ci denotes the theoretical mean concentration of species i, K represents 
the corresponding eddy diffusivity components, Ri is the chemical generation of species i, Ei 
describes the emission flux, Si is the removal flux, and u represents the mean value for each of 
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the wind velocity components.  Equation 6 can be simplified to correspond to a coordinate 
system that moves horizontally with velocities equal to the wind speed.  Thus, the particle 
moves at a velocity equal to that of the wind speed, and no material exchange exists between 
the parcel and its surroundings by advection (Seinfeld and Pandis, 1998).  Thus, the diffusion 
equation can be simplified to 
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The diffusion equation can be further simplified in the local model by comparing the vertical 

advective transport, which is described by the term z
cu i

z ∂
∂

 , to the vertical turbulent dispersion, 

which is described by the term 
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 in the diffusion equation (Seinfeld and Pandis, 

1998).  This assumption can be written as: 
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Thus, the z
cu i

z ∂
∂

 term can be neglected in the diffusion equation.  Next, assuming that 
horizontal concentration gradients contribute negligibly to the overall mass balance of the 
system, the horizontal turbulent dispersion terms can be neglected (Seinfeld and Pandis, 1998).  
Note, this assumption contributes a very small error in an area with homogenous emissions 
(uniform emission across the source); however, the error from this assumption becomes quite 
important in an area dominated by a few strong point sources (Seinfeld and Pandis, 1998).  
These two assumptions can be stated as: 
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The third and final, simplifying assumption to the diffusion equation is to neglect the wind shear.  
The Lagrangian model assumes that the air column being modeled remains intact during 
transport, thus assuming that 

     ( ) ( )tyxutzyxu xx ,,,,, ≅  [10] 

and  

     ( ) ( )tyxutzyxu xx ,,,,, ≅  [11] 

Literature notes that this assumption is critical to the validity of the trajectory model (Liu and 
Seinfeld, 1975).  Additionally, literature notes that this provides a major source of error in some 
of the trajectory model calculations, in particular those models that utilize long transport times. 

With these three assumptions, the one dimensional Lagrangian trajectory model, a simplification 
of the initial diffusion equations, can be written as  
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Assuming that the source is continuously emitting and homogenous turbulence, a Gaussian 
plume becomes the solution to the Lagrangian equation.  However, even in nonstationary and 
inhomogenous turbulence, the Gaussian equation can give an estimate of reasonable order of 
magnitude in practical circumstances (Lamb and Seinfeld, 1973). 

The backward – Lagrangian model used by Flesch et al. (2004b) is based on the simplified 
Lagrangian equation and of assumptions.  However, literature from these scientists notes that 
the backward model accounts for particle reflection from the surface, as does the Gaussian 
model used in this evaluation, which leads to false particle gradients at the surface (Flesch et 
al., 1995).  To reduce this error potential, the time scale on the model is reduced, thus reducing 
the maximum source to receptor distance of the model.  Research has shown that the backward 
model is about 50 times faster than the forward LS model when predicting concentrations from a 
substantial area source at a short range (Flesch et al., 1995).  The bLS model utilizes 
touchdown catalogs to determine the source of the particles arriving to a receptor location.   

The touchdown catalogs are independent of the average wind speed and concentration data, 
so, the model can be initially run without knowledge of the source geometry (Flesch et al., 
2004b).  Inherent in the bLS model are the same essential assumptions of the LS model: 
horizontally homogenous flow and a spatially uniform emission rate of the species being 
modeled (Flesch et al., 2004a). 

Dispersion Modeling Inputs Defined 
Back-calculated ammonia emission rates from concentration and meteorological field condition 
data were used to compare the two models.  Identical meteorological and concentration data for 
each test period were used in both models to determine the average emission rate for each 
respective test period.  The actual meteorological data used in this comparison can be obtained 
from the authors if needed. 

Receptor Layout 

Figure 1 describes the basic layout of Feedyard C and the location of the passive ammonia 
samplers.  Seven passive samplers (receptors), which are depicted by red on Figure 1, were 
placed along the downwind fence line of the feedyard.  Additionally, a tower was placed at a 
location halfway down the width of the feedyard, and receptors were placed at three different 
heights along this tower:  1.5 m, 3 m, and 6 m. 

 



 

7 

 
Figure 1.  Ammonia Receptor Feedyard Layout. 

 

Meteorological Inputs 

The stability of the atmosphere was the only input that was not directly measured by a sensor 
and was determined based on other data.  Atmospheric stability was described using the 
Pasquill-Gifford parameters where A corresponded to very unstable conditions, B corresponded 
to moderately unstable conditions, C corresponded to slightly unstable conditions, D 
corresponded to neutral conditions, E corresponded to slightly stable conditions, and F 
corresponded to stable conditions (Cooper and Alley, 2002).  These stability classes were 
determined using the Solar Radiation Delta-T (SRDT) Method for Estimating the Pasquill-Gifford 
Stability Class from the Meteorological Monitoring Guidance for Regulatory Modeling 
Applications published by the EPA and used in regulatory compliance monitoring, which can be 
seen in Table 1 (US EPA, 2000).  The SRDT method requires the surface layer wind speed, the 
daytime solar radiation measurements, and the nighttime vertical temperature gradients 
measured at the sampling location as data inputs.  The basic rationale of Turner’s method, 
which provides an initial way to determine the Pasquill-Gifford stability classes from National 
Weather Service data, supplies the foundation for the SRDT method (Turner, 1964).  However, 
the SRDT method accounts for the time periods with cloud cover and ceiling (US EPA, 2000).  
With the weather data, daytime stability classes were determined easily based from the solar 
radiation value and the wind speed.  However, during the data collection period, nighttime 
vertical temperature gradients were not available.  Since the ammonia concentration data was 
collected in August, 2002, it was assumed that the vertical temperature gradient was less than 
zero (the temperature of the local air decreases as the height increases).  The atmospheric data 
indicated that in the evening hours, the soil temperature was greater than the air temperature 
above the soil, so this assumption was valid at the surface, and it was assumed that this trend 
continued as the height increased. 
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Table 1.  SRDT Method for Estimating Stability Class. (adapted from US EPA, 2000) 
Daytime 

Solar Radiation (Watts/m2) Wind Speed (m/s) 
≥ 925 925 – 675 675 – 175 < 175 

< 2 A A B D 
2 – 3 A B C D 
3 – 5 B B C D 
5 – 6 C C D D 
≥ 6 C D D D 

 
Nighttime 
Vertical Temperature Gradient Wind Speed (m/s) < 0 ≥ 0 

< 2.0 E F 
2.0 – 2.5 D E 
≥ 2.5 D D 

 

Back-Calculated Emission Rate 
With all of the input data defined, the average back-calculated emission rate for each test was 
determined using the two different dispersion models: ISC-ST3 (Gaussian based) and WindTrax 
(backward-Lagrangian based). 

Gaussian Plume Dispersion Model 

The Gaussian plume based dispersion model Industrial Source Complex – Short Term version 3 
(ISC-ST3) is recommended by the EPA for  industrial sources, rural or urban areas, flat or 
rolling terrain, transport distances less than 50 kilometers, one-hour to annual averaging times, 
and continuous toxic air emissions (Trinity Consultants, 2000).  Thus, it was appropriate to 
model an agricultural operation such as Feedyard C using this model. 

For the Gaussian Plume based dispersion model, ISC-ST3 was used with the Breeze user 
interface.  The method used in this analysis to back-calculate emission rates from the area 
source is the method used by researchers from the Center for Agricultural Air Quality 
Engineering and Science at Texas A&M University. 

The ISC-ST3 model was graphically built with the feedyard layout and receptor layout as shown 
in Figure 1.  The ISC-ST3 layout can be seen in Figure 2.  By going into the data screen on ISC, 
an emission rate for the area source was set at 6*10-6 g/m2/s, and the start and stop test times 
were specified.  Next, a meteorological file was built using the MetView add-in and inputting the 
hourly wind speed, wind direction, and stability class information as measured at the feedyard.  
This file was then linked as the meteorological data for the model.  Note that the ISC model 
assumes a constant wind vector field across the entire area source for the hourly time period.  
Further information on running the ISC-ST3 application (Breeze Interface) can be obtained from 
the Center for Agricultural Air Quality Engineering and Science or Trinity Consultants (CAAQS, 
2004; Trinity Consultants, 2000). 
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Figure 2.  ISC Layout Screen Shot. 

 

With the input data established, the ISC model was run.  The governing equation for the ISC 
model is the Gaussian equation as noted in equation 1.  This equation shows the direct 
relationship that exists between the concentration (C) and the emission rate (Q).  As C is 
increased by a factor of x, Q is also increased by a factor of x.  Thus, by defining the initial 
emission rate guess into ISC-ST3 (6*10-6 g/m2/s) as Q1 and the output concentration at a 
receptor as C1, the actual net measured concentration, C2, can be used to find the emission 
rate, Q2, needed to generate this concentration at receptor i based off of the relationship in 
equation 13. 
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which can be rewritten as 
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Because the passive samplers were located on the same fence line of the feedyard, no single 
more downwind sampler exists.  Therefore, an average was taken from these 10 receptor 
emission rate calculations to determine the average emission rate for the test period.  Using the 
same conceptual equation as in 13 and the ISC-ST3 model, this emission rate was used to 
predict the pollutant concentration at each receptor location had the average emission rate been 
used with the same input data (with the predicted concentration as C2 and the average emission 
rate as Q2 as seen below in equation 15). 
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This process was performed for each set of test data.  Table 2 shows the average back-
calculated emission rates for each of the test periods. 
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Table 2.  Average Calculated Emission Rates Using ISC-ST3. 
ISC ER Test Length Test # g/(m2-s) (hrs) Stability Classes in this Test 

111 8.66E-06 2 D, C 
112 1.03E-05 3 C, B, C 
113 6.68E-06 3 All D 
114 4.64E-06 12 All D 
121 3.60E-06 7 D,D,D,D,D,D,C 
122 7.62E-06 5 All D 
123 5.31E-06 12 All D 
131 6.03E-06 3 All D 
132 1.03E-05 3 All D 
133 1.05E-05 3 All D 
134 7.17E-06 3 All D 
135 4.47E-06 12 All D 
141 4.42E-06 3 D, D, C 
142 3.90E-06 3 C, C, B 
143 7.06E-06 3 All B 
144 8.14E-06 3 C, C, D 
145 2.98E-06 12 All D 
151 6.56E-06 3 All D 
152 7.53E-06 3 C, C, B 
153 1.14E-05 3 B, C, C 
154 8.15E-06 3 All D 
155 2.48E-06 12 D, D, D, D, E, E, E, E, E, D, D, D 

 

 

Backward Lagrangian Stochastic (bLs) Model 

The backward Lagrangian Stochastic model is a local dispersion model (it should be used for 
short term modeling, not long term modeling).  Since regulatory monitoring to comply with 
regulations such as the NAAQS is performed near the source, this model may be applied.  
Additionally, the relatively flat surface of the rural environment provides a perfect emission 
surface of the Lagrangian trajectory model.   

For this part of the analysis, Windtrax (Version 1.0, Release 1.4.2, Thunder Beach Scientific, 
Alberta, Canada) was utilized as the backward-Lagrangian stochastic model.  The user’s guide 
notes that this model is restricted to ground level sources only (elevated sources are not 
possible with this algorithm), and the source to receptor distances must be less than about 1 km 
(Thunder Beach Scientific, 2003).  The source to receptor distances in the feedyard example 
were about 1.1 km apart, which was at the upper boundary of the valid source to receptor 
distance.  Additionally, it states that WindTrax 1.0 is only valid where the source is bare ground 
(or short vegetation), and the wind blows undisturbed (Thunder Beach Scientific, 2003).   

Before proceeding with the evaluation of the bLs model, it is important to restate the underlying 
assumptions as described in the literature review (Liu and Seinfeld, 1975).  First, the coordinate 
system is defined as a moving coordinate system that moves horizontally with velocities equal 
to the wind speed thus eliminating advection, which is the standard assumption of trajectory 
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models.  Second, horizontal diffusion is neglected by assuming that the horizontal concentration 
gradients contribute negligibly to the overall mass balance of the system.  Third, the vertical 
wind component has been ignored, thus assuming that air parcel movement is two-dimensional.  
Finally, the wind shear is neglected because the Lagrangian model assumes that the column 
height of the air parcel remains intact throughout the trajectory.  The backward-Lagrangian 
model is a modified version of the original Lagrangian model in order to account for the 
touchdown of particles at various locations on the source surface.  Thus, the assumptions of the 
bLS model are horizontally homogenous flow and a spatially uniform emission rate of the 
modeled species (Flesch et al., 1995).   

Pre-modeling Tests 

Before the model was run, various tests were used to determine how the bLS model functions 
because the actual source code for this particular model is not in the public domain unlike the 
ISC Gaussian model.  The modeling procedure will be detailed in the following section. 

First, the reversibility of the model was tested.  Using the receptor layout at the feedyard as 
shown in Figure 6.1, a random emission rate (6 µg/m2/s) was used to generate concentration 
data at each receptor for a given set of meteorological data.  Then, the emission rate was set as 
unknown and calculated from the same given set of meteorological and previously generated 
concentration data.  The calculated emission rate (6.07 µg/m2/s) was within 1% of the original 
emission rate.  This error was most likely attributed to a rounding error.  The calculated 
concentrations for each receptor was rounded when re-input into the model.  This alone could 
cause the 1% difference.  Thus, the reversibility of the model was affirmed. 

Next, the relationship between the emission rate and the concentration at the receptor was 
verified.  A simplified plot was used with a single area source and single concentration receptor 
with an unknown concentration.  The emission rate was set at 10 µg/m2/s, and the receptor 
concentration was calculated to be 67.9 µg/m3.  Then, the emission rate was multiplied by a 
factor of 2 to 20 µg/m2/s, and the receptor concentration was calculated to be 136 µg/m3.  Thus, 
the concentration at the receptor was also increased by a factor of 2 when the emission rate 
was increased by the same factor.  The emission rate was then multiplied by a factor of 3, 4, 
and 5, and the receptor concentration increased by a factor of 3, 4, and 5, respectively.  
Therefore, it can be said that a directly proportional relationship exists between the species 
emission rate and the concentration of that species at a downwind receptor. 

In order to use the ammonia concentration data collected over a time period longer than that of 
the meteorological data and to ensure that the models are being compared in the same way, the 
bLS model was used to back-calculate the emission rate in the same way as the ISC-ST3 
model.  A random emission rate is used to generate concentration values at each receptor for 
each hour of meteorological data.  Then, an emission rate necessary to calculate this receptor 
concentration was calculated by utilizing the proportional relationship that exists between the 
emission rate and the concentration at the receptor.  For comparison purposes, an average 
emission rate was computed from the ten calculated emission rates.  The process of 
determining these values in the bLS model is discussed in the next subsection. 
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Determination of the Area Emission Rate 

The process for back-calculating an emission rate in the bLS model is different than that of the 
ISC (Gaussian) model, but the inputs are the same.  In order to back-calculate an emission rate 
for an area source in the bLS model, the user must input the following parameters: 

1. Coordinates of the area source 

2. Wind speed at the main anemometer 

3. Wind direction at the main anemometer 

4. Height of the main anemometer 

5. Atmospheric stability (in terms of Pasquill-Gifford Stability Class, Monin-Obukhov length, 
general stability condition description, present weather conditions, or the gradient 
Richardson number) 

6. Pollutant background concentration at a receptor 

7. Height of the receptor 

8. Coordinate location of each receptor 

9. Soil surface data 

Using the same input data as the ISC-ST3 (Gaussian based model), the Windtrax (bLS based 
model) was run.  Concentration receptors were placed at a 3.0 m height along the fence line at 
76 m, 200 m, 322 m, 443 m, 570 m, 692 m, and 816 m.  Additionally, a tower was placed at 
(412.5 m, 1140 m) with concentration receptors placed at 1.5 m, 3 m, and 6 m.  All 10 
concentration receptors in the model were set in the unknown mode of the sensor output by 
clicking on the unknown option under the “Measurement” tab of the concentration sensor 
window.  For the comparison in this research an emission rate of 6 µg/m2/s was input as uniform 
across the drawn area source and was used to determine relative concentrations at each 
receptor.  The Windtrax layout can be seen in Figure 3 that follows. 

With all of the inputs to the model specified, the model was run using the green arrow at the top 
of the screen.  While the model ran, the individual backward particle trajectories were seen as a 
series of red dots on the model as seen in two different tests in Figure 4. 

After the model completed its run, the created output file was accessed to see the concentration 
data generated by the bLS model for a given emission rate.  This information was then used to 
calculate the average emission rate for a test period.   

When the model ran with the current feedyard conditions, a warning was generated because the 
source to receptor distance (noted as the tracking distance in the model output) exceeded the 1 
km specified maximum distance.  The length of the feedyard was 9.5% over this maximum 
distance (1.095 km).  The user’s guide notes that the analysis of this model is restricted to 
source to receptor distances of less than about 1 km (Thunder Beach Scientific, 2003).  Within a 
reasonably small error, the source to receptor distance in the model was at the upper boundary 
of the source to receptor distance considered to be valid to run the model. 
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Figure 3.  Screen Shot of the BLS Prior to Running the Model. 

 

 
Figure 4.  Examples of the BLS Model During 2 Different Runs. 

 

In order to ensure that the same outputs were being compared, the WindTrax model was run 
the same manner as ISC-ST3 in order to back-calculate an emission rate from the feedyard 
area source.  This method was followed because the ammonia concentration data used was 
over a larger time frame than the relatively small ∆t between concentration measurements 
assumed by the bLS model.  So, a method similar to that used in determining the average 
emission rate for a time period with the ISC model was employed.  Each test ran with the 
previously described layout, parameters, and a standard emission rate of 6 µg/m2/s.  The bLS 
model was used to calculate pollutant concentrations at each of the input receptors with the 
given meteorological data and standard emission rate.  For comparison purposes, the emission 
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rate necessary to achieve a given concentration at a receptor was calculated in the exact same 
manner as the ISC model method previously described using equation 13. 

Equation 13 shows the direct relationship that exists between the concentration (C) and the 
emission rate (Q), and the pre-modeling tests verify the validity of using this directly proportional 
relationship of C and Q.  As C increased by a factor of x, Q also increased by a factor of x.  
Thus, by defining the initial emission rate guess into the bLS model, Windtrax, (6*106 g/m2/s) as 
Q1 and the output concentration at a receptor as C1, the actual net measured concentration, C2, 
was used to find the emission rate, Q2, needed to generate this concentration as in equation 14.  
As previously done in the ISC model calculations, an average of the 10 receptor emission rate 
calculations was used to determine the average emission rate for the test period.  This was 
done because no single more downwind sampler existed since the passive samplers were 
located on the same fence line of the feedyard.  Using equation 15, the emission rate was used 
to generate the bLS predicted concentration at the receptor location had the average emission 
rate been used with the same input data (with the predicted concentration as C2 and the 
average emission rate as Q2). 

This emission rate back-calculation process was performed for each set of test data.  Table 3 
shows the average emission rate results of the bLS analysis for each of the test periods.  With 
the average emission rates for each test calculated, the bLS model results were in a form that 
could be easily compared to the Gaussian model results. 

Table 3.  Average Calculated Emission Rates Using WindTrax. 
bLS ER Test Length Test # 
g/m2/s (hrs) 

Stability Classes 

111 9.05E-05 2 D, C 
112 1.03E-04 3 C, B, C 
113 6.99E-05 3 All D 
114 4.84E-05 12 All D 
121 3.64E-05 7 D,D,D,D,D,D,C 
122 9.09E-05 5 All D 
123 5.57E-05 12 All D 
131 6.31E-05 3 All D 
132 1.08E-04 3 All D 
133 1.08E-04 3 All D 
134 7.55E-05 3 All D 
135 4.67E-05 12 All D 
141 4.67E-05 3 D, D, C 
142 3.53E-05 3 C, C, B 
143 5.68E-05 3 All B 
144 8.22E-05 3 C, C, D 
145 3.14E-05 12 All D 
151 6.51E-05 3 All D 
152 7.24E-05 3 C, C, B 
153 1.13E-04 3 B, C, C 
154 8.56E-05 3 All D 
155 1.86E-05 12 D, D, D, D, E, E, E, E, E, D, D, D
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Model Output Discussion 

After running the Gaussian based ISC-ST3 model and the backward Lagrangian Stochastic 
based WindTrax models, the outputs can be compared.  The average emission rate for each 
test as computed by each model were computed in a way to ensure that the model inputs are 
the same.  Table 4 summarizes the comparison of the emission rates from the two models 
evaluated in this research:  the EPA regulatory approved ISC-ST3 Gaussian based dispersion 
model and the backward-Lagrangian Stochastic based WindTrax model.  The first column of 
Table 4 indicates the test number of the data.  The second column shows the emission rate 
generated by the ISC model (Gaussian based).  The third column displays the emission rate 
generated by the WindTrax model (bLS based).  The forth column calculates the difference 
between the bLS model and the ISC model.  The next column computes the order of magnitude 
difference between the emission rates generated in each model (it is the bLS back-calculated 
emission rate divided by the ISC back-calculated emission rate). 

 

Table 4.  Overall Comparison of Summary Model Outputs. 
ISC ER bLS ER Diff ∆t 

Test # 
µg/m2/s µg/ m2/s µg/ m2/s 

Factor 
(bLS/ 
ISC) 

Day/ 
Night (hrs) 

Stability Classes 

111 8.66 90.5 81.9 10.46 Day 2 D, C 
112 10.3 103 93.1 10.06 Day 3 C, B, C 
113 6.68 69.9 63.3 10.47 Day 3 All D 
114 4.64 48.4 43.7 10.43 Night 12 All D 
121 3.60 36.4 32.8 10.11 Day 7 D,D,D,D,D,D,C 
122 7.62 90.9 83.2 11.93 Day 5 All D 
123 5.31 55.7 50.3 10.49 Night 12 All D 
131 6.03 63.1 57.1 10.46 Day 3 All D 
132 10.3 108 97.5 10.43 Day 3 All D 
133 10.5 108 97.4 10.25 Day 3 All D 
134 7.17 75.5 68.3 10.53 Day 3 All D 
135 4.47 46.7 42.3 10.45 Night 12 All D 
141 4.42 46.7 42.3 10.57 Day 3 D, D, C 
142 3.90 35.3 31.4 9.06 Day 3 C, C, B 
143 7.06 56.8 49.7 8.04 Day 3 All B 
144 8.14 82.2 74.0 10.09 Day 3 C, C, D 
145 2.98 31.4 28.4 10.53 Night 12 All D 
151 6.56 65.1 58.5 9.93 Day 3 All D 
152 7.53 72.4 64.8 9.61 Day 3 C, C, B 
153 11.4 113 102 9.96 Day 3 B, C, C 
154 8.15 85.6 77.5 10.51 Day 3 All D 

155 2.48 18.6 16.2 7.50 Night 12 D, D, D, D, E, E, 
E, E, E, D, D, D 

Overall 
Average 6.72 68.3 61.6 10.17  5.3  

Day Avg 7.53 76.6 69.1 10.18  3.3  
Night Avg 3.98 38.5 34.5 9.68  12.0  
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When the model generated back-calculated emission rates are compared, it is interesting to see 
the emission rates differ by a factor of 10.  Additionally, a comparison of the individual test data 
pieces reveal that the calculated emission concentrations from each model are extremely close.   

Literature notes that assuming a continuously emitting source and homogenous turbulence, the 
Gaussian plume equation becomes a specific solution to the Lagrangian equation (Lamb and 
Seinfeld, 1973).  A complete derivation of this solution can be found in the paper written by 
Lamb and Seinfeld (1973).  However, in nonstationary and inhomogenous turbulence, the 
Gaussian equation estimates the Lagrangian model within a reasonable order of magnitude in 
practical circumstances (Lamb and Seinfeld, 1973).  Thus, it is not all too surprising how close 
these emission rate back-calculations are.  What is troubling, though, is the factor of 10 (an 
order of magnitude) difference between the two model calculations.  This phenomena occurs in 
all of the trials, regardless of the atmospheric stability. 

Additionally, it is interesting to note that the factor slightly decreases for test number 143, in 
which the stability class is B (moderately unstable) for each hour during the measurement time.  
In a moderately unstable atmosphere, the rate of cooling of an air parcel moving upward is less 
than that of the surrounding air, so it is rapidly accelerated upward due to buoyant forces 
(Cooper and Alley, 2002).  Also, as the air parcel moves downward, buoyant forces cause the 
particle to accelerate downward due to the parcel warming at a slower rate than its surrounding 
environment (Cooper and Alley, 2002).  Thus, this moderately unstable stability class is 
characterized by much more vertical mixing.  This increased instability likely leads to an 
increase in the uncertainty in both model outputs and a decrease in the factor of difference 
between the models.  This is because the Gaussian model does not model unstable 
atmosphere accurately (Trinity Consultants, 2000), and it serves as a solution to the Lagrangian 
model (Lamb and Seinfeld, 1973). 

Conclusion 
An evaluation of the emission rates generated by both the Industrial Source Complex 
(Gaussian) model and the WindTrax (backward-Lagrangian stochastic) model revealed that the 
calculated atmospheric concentrations (C2 as used in equations 14 and 15) from each model 
using the average emission rate generated by the model are extremely close.  Though, as 
previously mentioned and seen in Table 4, the average emission rates calculated by the models 
varied by a factor of 10.  This is extremely troubling.   

Current and future sources are regulated by the emission rate data from previous time periods.  
Emission factors are published for regulation of various sources, and these emission factors are 
derived based upon back-calculated model emission rates and site management practices.  
Thus, a factor of 10 ratio in the emission rates could prove troubling in terms of regulation if the 
model that the emission rate is back-calculated from is not used as the model to predict a future 
downwind pollutant concentration. 

For example, it is necessary to look at interchanging the two back-calculated emission rates.  If 
the emission rate generated by the ISC (Gaussian) model is used in the WindTrax (bLS) model 
and assuming the validity of the two models, then the predicted downwind concentrations will be 
almost a factor of 10 less than what the actual concentration is downwind of the source.  An 
under-representation of the downwind pollutant concentration could lead to jeopardizing the 
public health and welfare, which is entirely opposite the mission of the Clean Air Act.  Or the 
opposite situation could occur.  If the emission rate generated by the WindTrax (bLS) model is 
used in the ISC (Gaussian) model and assuming the validity of the two models, the model would 
overpredict the downwind pollutant concentration, resulting in the over regulation of an emitting 
source.  This affirms the thought that emission rates back-calculated from one model cannot be 
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used as the input into another model and result in valid downwind concentration predictions.  
Regulatory agencies are looking into moving to Calpuff as the dispersion modeling standard.  
Currently, there are a large number of published emission rates and emission factors used for 
regulatory compliance monitoring based off of the ISC model.  Will these values be valid in other 
regulatory models?  Future research needs to address this question. 

Neither of these scenarios is desirable, but they illustrate the importance of properly reported 
data and the effect that improperly reported scientific data can have on the environment 
surround us.  Nonetheless, realistic engineering and sound science is vital not only in the 
creation of public policy but also in the enforcement of this policy. 
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